Polyurea Microencapsulated Palladium Catalysts

Pd EnCatTM

Outline

-Introduction

- -Catalyst synthesis
- -Catalyst physical characteristics
- -Catalyst activity optimisation
- -Catalyst mechanism
- -Chemistry examples
- -Parallel synthesis examples
- -Process Case Studies

Introduction

Pd Catalysed Reactions: A Pivotal Tool in the Chemists 'Tool Box'

Pd catalysed C-C bond formations

 Heck, Suzuki, Stille, Carbonylation, Sonogashiras, etc

- Pd-Catalysed C-O,C-N,C-S bond formation.
- Pd reductions/oxidations

Common Process Issues with Homogeneous Pd Catalysis

- Pd contamination of product regulatory requirements
- Pd contamination of intermediate interferes with downstream chemistry
- Pd contamination of reactor vessels cleaning costs
- Pd contamination in waste streams treatment costs
- Pd loss from process = high cost

Catalyst Synthesis

Microencapsulation of Palladium (II) Salts by in situ Interfacial Polymerisation

Catalyst Physical Characteristics

SEM 0.4 mmol/g Pd EnCat[™] 40

EDX Analysis 0.4 mmol/g Pd EnCat[™] 40

Dry State Porosity of 0.4 mmol/g Pd EnCat[™] 40

- BET nitrogen adsorption surface area = 0.07m²/g
 - no meso or macro pores
- Mercury intrusion porosimetry = 0.06cc/g
 - no macro pores
 - some partial collapse of internal voids

Solvent Swelling Of Pd EnCat[™] 40

Solvent	Swelling of EnCat™ %
DMF	110
DMA	100
THF	10
Acetone	20
EtOH	10
IPA	5
Toluene	0

Porosity of 0.4 mmol/g Pd EnCat[™] 40 In THF swollen state

Chromatographic Porosimetry investigation:

- Low pore size average pore diameter = 1.28nm
- Very low pore volume
- Mono dispersed pores
- Polystyrene molecules of MW >300 are excluded

Avecia

Leaching of Pd from Pd EnCat[™] 40

Solvent	Pd ppm	% Pd extracted
THF	1	0.15
Acetone	<1	<0.15
Ethanol	<1	<0.15
Acetonitrile	1	0.15
IPA	<1	<0.15
Toluene	<1	<0.15
Dioxane	1	0.15
Ethyl acetate	<1	<0.15
DMF	7	1.08
DMA	6	0.93

Pd EnCat[™] 40 Comparison with Pd(OAc)₂ in Simple Suzuki Coupling

Conditions: 3 mol% Pd, K₂CO₃, 80°C, EtOH/Water 20/1 Reaction stopped after 5 hours

Pd EnCat[™] Activity Optimisation

Enhancement of Pd EnCat[™] Activity

Achieved through increasing matrix porosity - improving access of substrates to metal species

- 1) Reducing polymer matrix content
- 2) Reducing cross-link density of PU matrix
- 3) Use of solvents capable of swelling matrix

Reducing Polymer Matrix Content

Avecia

Porosity in Solvent Swollen State as a function of Matrix Content

Chromatographic Porosimetry Investigation:

Matrix Content (%)	20	30	40
Swollen Bulk density (g/ml)	0.25	0.33	0.707
Swollen Pore volume (ml/g)	2.8	1.5	0.3
Average Pore Diameter (nm)	1.3	2.4	1.4
PS MW Exclusion	>300	>900	>300

Pore Size Distribution in Solvent Swollen State

Leaching of Pd from Pd EnCat[™] 30

Solvent	Pd ppm	% Pd extracted
THF	4	0.31
Acetone	1	0.08
Ethanol	<1	<0.08
Acetonitrile	<1	<0.08
IPA	<1	<0.08
Toluene	<1	<0.08
Dioxane	<1	<0.08
Ethyl acetate	<1	<0.08
DMF	5	0.39
DMA	3	1.01

Post Addition Of TPP to Pd EnCat[™] 40 Suzuki Coupling Reaction

 Initial induction period before reaction starts

Low levels (<3 ppm)
Pd detected in solution

$$\mathsf{TPP} = \left(\left\langle \right\rangle \right)_{3}^{\mathsf{P}}$$

Initial Kinetics Following Post Addition Of TPP to Pd EnCat[™] 40 and 30

Pd EnCat[™] 40

0 Pd EnCat[™] 30

- Pd EnCat[™] 30 shorter induction
- Induction period is sensitive to the amount of TPP

Overall Kinetics Post Addition Of TPP to Pd EnCat[™] in Suzuki Coupling Reaction

Pd EnCat[™] 40

Pd EnCat[™] 30

Pd EnCat[™] with Co-Encapsulated Phosphine Ligand

Pd EnCat[™] Activity with Co-Encapsulated Phosphine Ligands (Pd/P 1/0.5)

B(OH)

BDPPB Pd EnCat[™] Activity

Conditions: 3 mol% Pd, K₂CO₃, 80°C, IPA/Water 20/1

Crude Product 20ppm Pd 50ppm P

Pd EnCat[™] with Co-encapsulated Phosphine Ligand

- Fast reactions in quantitative yield
- Low palladium leach (<15ppm, <1% total)*
- Some phosphine ligand leach (<30ppm, <10% total)*
- Greatly simplified reaction work up
- Versatile 'tunable' catalyst design

Solvent dependent

Customised Catalysts

Pd EnCat[™] catalysts - can be tailored to a specific process and chemistry by selection of:

- Metal type and loading
- Ligand type and loading
- Matrix porosity and particle size

Fluorescent Labelled Pd EnCatTM

Microencapsulated Palladium Acetate Products

Product	Matrix Content %	Pd content mmol/g (%)	Co- encapsulated ligand	Average particle size micron
Pd(II) EnCat™ 40	40	0.4 (4)	-	150-200
Pd(II) EnCat™ 30	30	0.4 (4)	-	150-200
Pd(II) EnCat™ TPP30	30	0.4 (4)	P	150-200
Pd(II) EnCat™ TOTP30	30	0.4 (4)	[150-200

Microencapsulated Palladium Zero Nano Particulate Products

Product	Matrix Content %	Pd content mmol/g (%)	Co- encapsulated ligand	Average particle size micron
Pd(0) EnCat™ 40NP	40	0.4 (4)	-	150-200
Pd(0) EnCat™ 30NP	30	0.4 (4)	_	150-200

Pd EnCat[™] Mechanism

Catalyst Mechanism

Control reactions with Pd(Ph₃)₄ gave 4:1 product : Ar-Br

Pd-EnCat[™] - <u>no</u> detectable product.
Only pure Ar-Br

c.f. I. W. Davies et. al., J. Am. Chem. Soc., 2001, 123, 10139-10140

Catalyst Mechanism

Reaction probably takes place within microcapsules:

- Suzuki substrates added to hot solvent extracts of Pd EnCat[™] gave no reaction.
- Removal of Pd EnCat[™] from Suzuki reaction mixture by hot filtration stopped reaction.

Mechanism

Chemistry Examples with Pd EnCatTM

Chemistry Examples

Suzuki Couplings Catalysed by Pd EnCat[™] 40

R1	R2	Yield %
p-OMe	p-OMe	87
p-OMe	p-F	89
p-OMe	p-NO ₂	91
o-OMe	o-OMe	71
p-Ac	p-OMe	84
p-Ac	p-F	90
p-Ac	p-NO ₂	97
Н	p-OMe	94
Н	p-F	93
Н	p-NO ₂	97

Pd EnCat[™] Development Product

Pd EnCat[™] Binap30

Electron Rich Suzuki Couplings Pd EnCat[™] Binap30 Catalysed

Aryl Halide	Product	Encap Ligand (% Yield)			
+		None	TPP	ΤΟΤΡ	Binap
MeO — B(OH) ₂			P		PPh ₂ PPh ₂
Br		55	74	76	>99
Br -OH	МеО — ОН	27	15	2	50
Br		53	76	91	>99
Br — N		68	61	100	97

Avecia

Pd EnCat[™] Binap30 Catalysed Electron Rich Suzuki Couplings

Aryl Halide + MeO -B(OH) ₂	Product	% conv	*Pd ppm	*P ppm
Br	MeO	>99	2	30
Br ————————————————————————————————————	МеО	50	3	38
Br	MeO -	>99	2	34
Br — N	MeO – N	97	5	47

* In crude product following solvent evaporation

Avecia

Pd EnCat[™] 40 Catalysed Heck Reactions

Conditions: 2.5mol% Pd EnCat[™] 40, IPA, nBu₄NOAc,90°C, olefin

Pd EnCat[™] 40 Catalysed Carbonylations

Substrate	Product	Yield (%)
	CO ₂ nBu	89
MeO	MeO CO2 nBu	99
MeOC	MeOC CO2 nBu	95
	CO ₂ nBu	93
S S S S S S S S	CO ₂ nBu	98

Conditions: 3mol% Pd EnCat[™] 40, nBuOH, CO, TEA, 90°C

Pd EnCat[™] 40 Catalysed Stille Reactions

Conditions: 2.5mol% Pd EnCat[™] 40, IPA/Tol 1/1, nBu₄NOAc, 90°C, Me₃SnPh

Influence of Thiol Substrates In Pd EnCat[™] Suzuki Couplings

Pd EnCat[™] 40 Suzuki Coupling of Sulfides

Pd EnCat[™] 40 & Suzuki Coupling In the Presence of Thiol Contaminant

4-THIOCRESOL	45min	2.5h	3h	4h	Crude
0%	66%	82%	82%	82%	>90% (5h)
0.1%	37%	73%	79%	81%	>90% (5h)
1%	1%	1%	-	3%	3% (24h)
3%	1%	2%	-	4%	4% (24h)

Hydrogenation and Transfer Hydrogenation with Pd(0) EnCat[™] and Pd(0) EnCat[™] NP

Pre activation of catalyst required:

Reduction of Pd with hydrogen

or

Reduction of Pd with formic acid

Characteristics Pd(0) EnCat[™]

Low activity catalyst

Pd Particles > 5nm, single domain and well ordered

Selective reductions possible

Pd(0) EnCat[™] 40 Hydrogenations

Pd(OAc)₂ En Cats in Hydrogenation

Preparation of Nano Particulate Pd(0) EnCat[™] NP

Pd particles <2nm (approx 10 atoms) Nano structure stabilised by polyurea matrix

Highly active and recyclable H₂ transfer catalyst High chemoselectivity Non pyrophoric

Nano Particulate Pd(0) EnCat[™] NP

Transfer Hydrogenation with Pd(0) EnCat[™] 40NP

Kinetics Pd(0) EnCat[™] 40NP vs Pd(0) EnCat[™] 30NP

Transfer Hydrogenation of Aryl Ketones – Catalyst Loading Study

Recycle - Transfer Hydrogenation of Aryl Ketones with Pd(0) EnCat[™] 40NP

Run	1	2	3	4	5
Yield (%)	99	98	98	97	96
Time (h)	21	22	24	26	28

Reagents and conditions: 10 mol% NP Pd⁰ EnCat,
200 μL EtOAc, 0.8 mmol HCOOH, 0.8 mmol Et₃N, 0.16 mmol acetophenone, 24 ^oC.

Recycle - Transfer Hydrogenation of Benzylic Epoxides with Pd(0) EnCat[™] 40NP

Conditions: 5 mol% NP Pd⁰ EnCat[™], Et₃N, HCOOH, EtOAc, 5 hours

Catalyst recycled 10 times without loss of activity or yield

Transfer Hydrogenation of Aryl Ketones with Pd(0) EnCat[™] 40NP

Substrate	Product	Time (hr)	Yield (%)
$\mathbf{\mathbf{\mathbf{A}}}$	HO H	68	99
	CI	48	95
F ₃ C	F ₃ C	24	92
	ОН	21	99

Transfer Hydrogenations Aryl Ketones with Pd(0) EnCat[™] 40NP

Substrate	Product	Time (hr)	Yield (%)
	OH	36	90
CF3	CF3	48	99
	OH OH	18	99
	N N N N N N N N N N N N N N N N N N N	18	99

Chemo-selective Transfer Hydrogenation Of Nitro Groups with Pd(0) EnCat[™] 40NP

Conditions: 10 mol% NP Pd⁰ EnCat[™], EtOAc, HCOOH, Et₃N, Ketone, RT

Transfer Hydrogenation of Benzylic Epoxides by Pd(0) EnCat[™] 40NP

Conditions: 5 mol% Pd EnCat[™], Et₃N, HCOOH, EtOAc, 3 hours

OH

Transfer Hydrogenation Of Benzylic Epoxides with Pd(0) EnCat[™] 40NP

Substrate	Product	Time (h)	Yield (%)
	OH	3.5	90
Ph	OH OH	5.5	97
	OH	5	72
CH ₂ OH	CH ₂ OH OH	4.5	92
	OH OH	12.5	92

Transfer Hydrogenation Of Benzylic Epoxides with Pd(0) EnCat[™] 40NP

Conditions: 5 mol% NP Pd⁰ EnCat[™], Et₃N, HCOOH, EtOAc, 5 hours

Catalyst recycled 10 times without loss of activity or yield

Transfer Hydrogenation - Comparison of Pd(0) EnCat[™] 40NP with Pd/C

Reductive Cyclisation to Indole by Pd(0) EnCat[™] 40NP

Step 1 Leimgruber-Batcho – microwave, DMF, Lewis acid

Step 2 6 mol% NP Pd⁰ EnCat[™], EtOAc, 5 equiv HCOOH/Et₃N, 24°C, 24 hours

or

microwave, 120°C, 2 hours

Influence of Thiol Substrates in Pd(0) EnCat[™] 40NP Transfer Hydrogenation Of Nitro Groups

Advantages of Pd(0) EnCat[™] 30NP

- Easy and safe to handle vs Pd/C
- Hydrogenations without the need for hydrogen gas
- Simple recovery of catalyst
- Very low metal contamination
- Versatile matrix
- Can be recycled

Pd EnCat[™] in Parallel Synthesis

Automated Library Synthesis with Pd(0) EnCat[™] 40NP

- O-capped biaryl carbinols of interest as herbicides
- Can we use Pd⁰ EnCat to prepare a range of alcohol intermediates in a library synthesis?
 - Building blocks would be of general use in other chemistries

Parallel Substrate Screening Experiment

- Use of 2 x 48 Bohdan Miniblocks for scale and ease of filtration
- Evaporated filtrate + DCM + water filtered through phase separation plate
- 96 products analysed by LC-MS, GC-MS and NMR

Examples of Successful Reactions

trucciu
Examples of Low Yield Transfer Reductions with Pd(0) EnCat[™] 40NP

Influence of Switching to Pd(0) EnCat[™] 30NP with Difficult Substrates

Influence of Switching to Pd(0) EnCat[™] 30NP with Difficult Substrates

Unusual Products

Intramolecular Heck Library: Pd EnCat[™] 30 vs 40

Avecia

Process Case Studies with Pd EnCatTM

Suzuki Coupling Process Example Pd EnCat[™] 30 vs 5% Pd/C

Suzuki Coupling Process Example Pd EnCat[™] 30 vs 5% Pd/C

Hindered Suzuki Process E.g. – Problem Residual Pd with Homogeneous Catalyst PdCl₂(PPh₃)₂

<50ppm Pd in crude product

Hindered Suzuki Process E.g. – Problem Residual Pd with Homogeneous Catalyst PdCl₂(PPh₃)₂

Case Study - Pd EnCat[™] 40

Suzuki Coupling Route to 4-Pyridin-4-yl-benzoic acid:

Existing Homogeneous Route

Conditions: EtOH/Water, K₂CO₃, Ligand, 0.4-1 mole% Pd (PPh₃)₄

Issues:

600ppm Pd in crude product Pd in waste stream Cost - no catalyst reuse

Target to achieve <100ppm Pd in crude

Pd EnCat[™] 40 Case Study

- No reaction without addition of phosphorus ligand
- 0.75 mole % Pd EnCat[™] 40, 2.5 mole % TPP
- 75-85 % yield
- Reuse >3x without loss of activity
- Only 20ppm Pd in waste stream
- But 400ppm Pd in crude product (2 to 4% loss)

Pd EnCat[™] 40 Case Study

Changed to much cheaper chloro pyridine:

No product under previous conditions Pd EnCat[™] 40 / TPP

Extensive ligand screen – monitoring yields and impurity profiles:

Pd EnCat[™] 40 Case Study

Biphenyl phosphines best ligands:

Highly active catalyst, optimisation reduced both Pd and ligand charge versus bromopyridine reaction:

Ligand:0.3 mole% biphenyl vs 2.5 mole% for TPPPd EnCatTM:0.13 mole% Pd vs 0.75 mole%

Rate x3 faster than bromopyridine

Pd EnCat[™] Optimised Process

- 85% product yield
- Successful scale up
 - easy to charge & filter catalyst with low cake resistance
 - good mixing with retreat curve impellers
- Rate acceleration for Pd EnCat[™] x30 that of Pd(OAc)₂*
- Catalyst recycle
- 90 ppm Pd in crude product achieving 100ppm customer target.
- Remove catalyst & reaction stops, implies reaction occurs within EnCat[™] matrix
 - * Reaction in beads provides an area of localised high catalyst/reagent concentration?

Pd EnCat^{™ -} Reported Benefits at Process Scale

- no plating out of palladium metal on vessel walls
- reduced cleaning issues; reducing solvent use and cycle time
- ability to access a wider range of process technology e.g. fixed bed, fluidised, trickle bed and microwave reactors
- safer to handle vs palladium on carbon
- reduced metal loss
- integrates into standard chemical plant

Acknowledgments

Avecia	Cambridge	Syngenta	AstraZeneca
D Pears M Nisar I Houson J Blacker R Fieldhouse K Treacher	Prof S V Ley Prof A Holmes Dr C Ramarao R Gordon Dr Jin Yu C Mitchell	S Smith I Shirley	I McConvey A Wells D O'Beirne N Dealmeida J Hebblethwaite
		Millenium	
		D Tapolczay	

Microencapsulated Palladium(II) Products - Pd EnCat[™]

Product	Matrix Content %	Pd content mmol/g (%)	Co- encapsulated ligand	Average particle size micron
Pd(II) EnCat™ 40	40	0.4 (4)	_	150-200
Pd(II) EnCat™ 30	30	0.4 (4)	-	150-200
Pd(II) EnCat™ TPP30	30	0.4 (4)	P	150-200
Pd(II) EnCat™ TOTP30	30	0.4 (4)	P	150-200

Microencapsulated Palladium Zero Nano Particulate Products

Product	Matrix Content %	Pd content mmol/g (%)	Co- encapsulated ligand	Average particle size micron
Pd(0) EnCat™ 40NP	40	0.4 (4)	-	150-200
Pd(0) EnCat™ 30NP	30	0.4 (4)	-	150-200

